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     Abstract 

Kullback- Leibler’s measure (D (p:q)) of cross entropy has been used for the modelling  in regional and 

urban planning. Considering the regional and urban population distributions to be arithmetic and 

geometric, we have shown that the nature of distribution is independent of Kullback- Leibler’s measure. 

Using these results we find D (p:q) for Binomial, Poisson and Negative binomial distributions which 

comes out to be a convex function of  the new parameter and a minimum value of zero when the new 

parameter coincides with the original parameter. We have shown the difference of results obtained from 

MinxEnt and MaxEnt principle. 

 

     Keywords : Regional and urban planning, Entropy, Kullback-Leibler’s cross entropy, MaxEnt,   

                          MinxEnt. 

 

 

1. Introduction 

The perception of entropy was first presented by Clausius in 1864 [1] into thermodynamics in the  

middle of the nineteenth century, an advanced used in a dissimilar procedure by L. Boltzmann in his 

revolutionary effort on the kinetic theory of gases in 1872 [2]. We are interested in information-theoretic 

entropy rather than thermodynamic entropy. Both the concepts are related but for the application of 

problems such as regional and urban planning, urban transport system, particularly, the traffic network and 

flow to meet future demand [3-5], traffic signal optimization [6], different statistical problem [7-10], 

econometric application [11] etc.,  the former is suitable for our exposition.  

In the last two decades there has been a great interest in generalizing Shanon entropy principle [12]  

exploring its consequences to physics and other problems. The subsequent discovery of Jayens [13] arose 

with the connection in statistical mechanics deriving probability distributions by maximizing the Shanon 

measure which is known to be Jayne’s maximum entropy principle. Shannon’s information-theoretic entropy 
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was widespread by Kullback and Leibler [14] in 1951 by way of relative entropy or cross entropy or the 

divergence measure between two probability distributions. Kullback’s MaxEnt principle can be 

demonstrated from Jayne’s maximum entropy principle but the Kullback’s minimum cross entropy 

principle is based on entirely two different concepts: 

 Kullback-Leibler’s (K-L) measure 

 Minimization of the K-L measure subject to specified linear moment constraints. 

     The Kullback-Leibler’s divergence measure deals with the detachment between two          

probability density distributions. This divergence is similarly identified as information         divergence and 

relative entropy. The reputation of detachment between probability distributions ascends as of the character 

they show in the complications of inference and discrimination. The perception of detachment between two 

probability distributions was primarily established by Mahalanobis [15] in 1936. Since then numerous forms 

of detachment    measures have been established in the works [11].  A perception thoroughly connected to 

the one of detachment method is that of divergence measures grounded on the inkling of information-

theoretic entropy major announced in communication theory by Shannon [12] and advanced by Wiener [16]. 

 Kullback-Leibner method can be used in multidisciplinary research. Kullback-Leibner information 

can be applied as a basis in ecological studies [17]. Cross entropy method has been used for signal 

optimization as shown in Ref. [6], spectral density function [18],iterative image reconstruction [19], 

econometric applications [11], estimating social accounting matrix to find an efficient and cost-effective 

way to incorporate and reconcile information from a variety of sources, including data from prior years [20] 

etc.  We present the K-L method for urban and regional planning. These models are of great importance in 

two ways. Firstly, urban and regional models using entropy optimization method is the key to achieve a 

scientific understanding of cities and regions. Secondly, an increasingly importance in several associated 

planning of existing urban and regional socioeconomic problems. So many works have been done in urban 

and regional planning using Shanon entropy [12], Jayne’s entropy [13] etc.  

The purpose of the present work is to study MinxEnt principle from a theoretical point of view for 

the application in rural and regional planning using Kullback – Leibler’s measure of cross entropy method. 

The paper is organized as follows: In Section 2 we present the Modelling on Urban  

and Regional planning and Kullback – Leibler’s measure of cross entropy method and subsequently we 

discuss the properties of K-L measure. In Section 3 we discuss the results. Finally we conclude in Section 5. 

 

2. Modelling on Urban and Regional planning 

 

Let p1,p2,…,pn be the amounts of inhabitants of a city, existing in n inhabited colonies and let  

the conforming comprehensive cost of breathing be c1,c2,…,cn individually. Each comprehensive cost 

embraces the cost of transportable from the colony to the Central Business District (C.B.D.) as shown in Fig. 

1. Now enchanting into explanation the capabilities and civic facilities, we may like the populations to be 
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circulated in the ratios q1,q2,…,qn. These will give magnitudes that can live in these colonies affording to 

some fixed norms. In this case, we should like to minimize, 
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where,  is Lagrange’s undetermined multiplier. The detailed description of the solution is given in 

Appendix A. 

 

 

Fig. 1: Proportions of p1,p2,…,pn Populations living in n colonies and travelling to CBD. 

 

 

 

We consider Kullback-Leibler’s cross entropy method to perform the entropy optimization  

technique in the modelling of rural and urban planning. In the next section we present a brief description of 

Kullback-Leibler’s cross entropy method along with its properties. 

 

2.1 Kullback – Leibler’s measure of cross entropy method: 

 

 Kullback’s Minimum cross entropy principle (MinxEnt), is an entropy optimization  

technique. The MinxEnt principle depends on two facts, first of all, the cross entropy of a probability 

distribution P with respect to the other probability distribution Q and that of an priori probability 

distribution. 

 The Kullback-Leibler measure of cross entropy is the most fundamental measure among all  

such possible measures. 
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 Let p = 
1 2( , ,..., )np p p  and q = 

1 2( , ,..., )nq q q be two probability distributions. Then the Kullback-

Leibler measure is defined as 

n

0

( : ) = ln( )i
i

i i

p
D p q p

q

  

where we assume that whenever iq = 0, the corresponding ip  is also zero. We define
0

0ln( ) 0
0

. 

2.2 Properties of Kullback-Leibler (K-L) Measure: 

 

i) ( : ) 0D p q  . 

ii) ( : ) 0D p q   iff p = q. 

iii) ( : )D p q  should be a convex function of 1 2, ,..., np p p . 

iv) When ( : )D p q is minimized subject to known linear constraints using Lagrange’s method, 

none of the resulting minimizing probabilities should be negative. 

v) ( : )D p q is a continuous function of  1 2, ,..., np p p and 1 2( , ,..., )nq q q . 

vi) ( : )D p q  is permutationally symmetric. 

3 Result and Discussion  

For rural and regional planning, we  present different distribution functions to suite the situation.  In this 

paper we present two different distributions depending on q using the aforementioned model and from this 

result we explain the interesting nature of p. 

 

Case I: q is the Arithmetic Distribution. 

CaseII:   q is Geometric Distribution.  

 

 

3.1 When q is the Arithmetic Distribution 

 

Here we shall find out the probability distribution of p when q is the arithmetic distribution i.e. 
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So, the probability distribution of p is given as 

2{ . , . ( ). , . ( 2 ). ,..., . ( ). }nk k a k k a d b k k a d b k k a nd b       i.e. also a Arithmetic distribution. 

 

3.2 When q is the Geometric Distribution 

 

Here we shall find out the probability distribution of p when q is the arithmetic distribution i.e. 
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Where,  
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So, the probability distribution of p is given as 

2 2{ . , . . , . . ,..., . . }n nk k k k c b k k c b k k c b     i.e. also a Geometric distribution. 

 

Corollary1: Values of D (p:q) for different priori distribution and D (p:q) as convex function of  the new 

parameter and a minimum value of zero when the new parameter coincides with the original parameter. 

 

It can be inferred from the above two results that when distribution q is arithmetic, p comes out to be 

arithmetic. Same is true for geometric distribution. Now in the next part we calculate the values of D(p:q) 

for the two different distribution (q): (i) Binomial Distribution and (ii) Poisson Distribution and (iii) negative 

Binomial Distribution taking into consideration the fact that p will be Binomial and Poisson distribution, 

negative Binomial Distribution respectively. 

 

3.3 For Binomial Distribution 
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Now, we shall show that D (p:q) as a convex function of the new parameter i.e. p: 

From Equation (2), we get, 
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This is positive. 

 

So, that D (p:q)as a convex function of the new parameter i.e. p. 
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i.e. minimum value will be obtained only when the new parameter coincides with the original parameter and 

the minimum value is 

From Equation (2), we get, 
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Now, we shall show that D (p:q) as a convex function of the new parameter i.e. m: 

 

From Equation (4), we get, 
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Similarly, 
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This is a positive. 

So, that D (p:q)as a convex function of the new parameter i.e. m. 
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i.e. minimum value will be obtained only when the new parameter coincides with the original parameter and 

the minimum value is 

From Equation(4), we get, 
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3.5 For Negative Binomial Distribution 
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4 Conclusion 

In conclusion, we can assume, without loss of generality that c1,c2,…,cn are arranged in ascending  

order of magnitude so that 

 c1 ≤ c2 ≤ c3 ≤ …≤ cn                                                               [6] 

Using  Equations (5) and (6), 
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( )f  =0 iff  c1 =c2 =c3= …=cn which we will assume not the case, so ( )f  < 0, i.e. ( )f  is a decreasing 

function of µ.So, the maximum value of  ( )f  is nc c and minimum value is  1c c . 

Now, we will discuss about the characteristics of the roots of the equation ( ) 0 f   . 

1. ( ) 0 f   has no real root if c<c1 or c>cn. 

2. ( ) 0 f   has a positive root if c1<c<c’. 

3. ( ) 0 f   has a negative root if c’<c<cn. 

4. ( ) 0 f   is satisfied by µ=0 if c=c’. 

Now, we will find the minimum cross entropy using MinxEnt principle. This is expressed in Fig. 2. 
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Fig. 2: Characteristics of function ( )f   
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Now, taking differentiation, we get, 
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Now, from Equation (10) we can conclude that D(p:q) is a convex function of c, as from Equation (9) we 

have <0 
c
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D(p:q) will be minimum only when qi is uniform distribution i.e. 
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In Table 1 we present the comparison of results obtained by MaxEnt and MinxEnt principles and it is 

observed that maximum value is obtained only when uniform distribution is occurred whereas minimum 

value is obtained for uniform distribution whereas minimum value is obtained for uniform distribution of qi 

and ci. 

Table 1: Comparison of Results obtained by using MaxEnt and MinxEnt Principles 

Using MaxEnt Principle Using MinxEnt principle 

pi is independent of qi. pi is dependent of qi. 

Maximum Entropy S is a 

concave function of c. 

Minimum Entropy is a convex 

function of c. 

 

Maximum Entropy is ln(n). Minimum value is 0. 

Maximum value obtained only 

when Uniform distribution is 

occurred. 

Minimum value obtained on 

Uniform distribution of qi and 

ci. 
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 Appendix A: Calculation of the Lagrangian 

Lagrangian L is given by, 
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Now using constraints, we get, 
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µ can be obtained from the equation, 
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